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Abstract. Javanese characters are traditional characters that are used to write the 
Javanese language. The Javanese language is a language used by many people on 
the island of Java, Indonesia. The use of Javanese characters is diminishing more 
and more because of the difficulty of studying the Javanese characters 
themselves. The Javanese character set consists of basic characters, numbers, 
complementary characters, and so on. In this research we have developed a 
system to recognize Javanese characters. Input for the system is a digital image 
containing several handwritten Javanese characters. Preprocessing and 
segmentation are performed on the input image to get each character. For each 
character, feature extraction is done using the ICZ-ZCZ method. The output from 
feature extraction will become input for an artificial neural network. We used 
several artificial neural networks, namely a bidirectional associative memory 
network, a counterpropagation network, an evolutionary network, a 
backpropagation network, and a backpropagation network combined with chi2. 
From the experimental results it can be seen that the combination of chi2 and 
backpropagation achieved better recognition accuracy than the other methods. 

Keywords: backpropagation; bidirectional associative memory; chi2; 
counterpropagation; evolutionary neural network; Javanese character recognition. 

1 0BIntroduction 

Many people on the island of Java use the Javanese language in their 
conversation. The Javanese language has its own letterforms that differ from 
Roman characters. Javanese character recognition has its own difficulties 
because of the shapes of the basic characters, vowels, complementary 
characters, and so on. Because the characters are difficult to recognize, not 
many people can read or write Javanese script any more. For many people, 
Javanese characters will eventually be regarded as decoration only and not 
mean anything. This will gradually erode the existence of Javanese characters 
and will ultimately also affect Javanese culture in general. 

In this research, we have developed a system that can automatically recognize 
Javanese characters in the form of a digital image and convert them into digital 
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text using a Hanacaraka font. The first process is digital image preprocessing, 
followed by segmentation and feature extraction. The features will be used as 
input for the recognition system. In this research we used and compared five 
methods of artificial neural networks for recognition, namely a bidirectional 
associative memory network, a counterpropagation network, an evolutionary 
neural network, a backpropagation neural network, and a combination of chi2 
and a backpropagation neural network.  

In addition to serving as the basis of further research, we hope that with this 
system the Javanese characters can be preserved and studied more easily. The 
system, which makes it easy to save articles in Javanese characters to electronic 
documents, can also help teachers teach the Javanese language in schools. And 
finally for those who do not know about Javanese script, this system can be 
used to identify and interpret writings in Javanese characters that they encounter 
in touristic sites. 

2 Related Works 

Some researchers have conducted research on Javanese character recognition. 
Nurmila [1] used a backpropagation neural network. The accuracy rate was 
about 61%. Another researcher, Priyatma, used fuzzy logic [2] and the 
recognition results were satisfactory. Also in relation to Javanese character 
studies, Rudy, et al. [3] have developed an application that translates the results 
of typing on a Roman letter keyboard into Javanese characters using a 
Hanacaraka font. This application can later be combined with the result of the 
present research to create optical character recognition and an editor for 
Javanese characters. This research is an extension of previous research [4],[5], 
which evaluated the use of a backpropagation neural network for character 
recognition and some improvement in digital image preprocessing. 

Several studies on the implementation of artificial neural networks have also 
been done, including automatic classification of sunspot groups for space 
weather analysis [6] using backpropagation and other neural network methods. 
Other studies have used backpropagation methods to recognize types of 
automobiles [7], to identify abnormalities of the pancreas through the image of 
the iris with a recognition rate of more than 90% [8], and to recognize 
characters in a digital image [9]. 

3 Javanese characters 

Compared to Roman characters, Javanese characters have a different structure 
and shape. The basis of the Javanese characters is called carakan, which 
consists of 20 syllables called dentawyanjana, see Figure 1 [10]. 
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Figure 1 Basic (carakan) characters. 

Numbers in Javanese characters are shown in Figure 2 [11]. 

 
Figure 2 Javanese symbols for numbers. 

Sandhangan characters are special characters that are used as complementary 
characters, vowels or consonants that are commonly used in everyday language. 
Sandhangan can be seen in Table 1 [12]. 

Table 1 Sandhangan characters. 

Sandhangan name Java character Description 
Pepet 

 
Vowel ê 

Taling 
 

Vowel é 
Wulu  Vowel i 

Taling tarung  Vowel o 
Suku  Vowel u 

4 Image Segmentation 

One of the important processes used to transform an input image into an output 
image is segmentation. Segmentation is based on the attributes of the image. 
The image is divided into several regions based on their intensity, so objects 
and background can be distinguished. Once each object has been isolated or 
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made clearly visible, segmentation should be discontinued [13]. In this research, 
we used thresholding and skeletonizing for the segmentation process. 

Thresholding is one way of separating objects (foreground) in an image from 
the background by selecting a threshold value T. In thresholding, the value of T 
is used to separate all points (x, y) in an image in two categories. All points 
(x,y), where f (x, y) > T, can be called either an object point or a background 
point [13]. 

To get rid of redundant pixels and produce an image that is more modest in size, 
the skeletonizing process is used. The goal of skeletonizing is to make a simpler 
image, so that the shape and suitability of the image can be analyzed further. 
The most important problem addressed in the skeletonizing process is how to 
determine the redundant pixels. If we do not adequately determine the 
redundant pixels, the skeletonizing process is likely to turn into an erosion 
process, which can cause image regions to be deleted. The skeleton should have 
some basic properties, such as [14]:  

1. The pixels that form the skeleton should be located near the middle area of 
the region’s cross section. 

2. It must consist of several thin regions, with each region having a width of 
only 1 pixel. 

3. Skeletal pixels must be connected to each other to form several regions and 
the number of those regions should be equal to the number of regions in the 
original image. 

5 Bidirectional Associative Memory 

In 1988 Bart Kosko proposed an artificial neural network called bidirectional 
associative memory (BAM) [15]. BAM is a hetero-associative and content-
addressable memory. A BAM network consists of two bipolar binary layers of 
neurons, say A and B. The neurons in the first layer (A) are fully interconnected 
to the neurons in the second layer (B). There is no interconnection between 
neurons in the same layer. Because the BAM network processes information in 
time and it involves bidirectional data flow, it differs in principle from a linear 
association, although both networks are used to store association pairs [16]. A 
general diagram of BAM is shown in Figure 3. 

BAM algorithm [16]:  

Step 1:  The associations between pattern pairs are stored in the memory in the 
form of bipolar binary vectors with entries -1 and 1.  

  {(a(1), b(1)), (a(2), b(2)), …, (a(p), b(p))} (1) 
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Vector a stores a pattern and is n-dimensional, while vector b is m-dimensional 
and stores the associated output. 
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Figure 3 Bidirectional Associative Memory: General Diagram. 

Step 2: Calculate weight using Eq. (2). 

 𝑊 = ∑ 𝑎(𝑖)𝑝
𝑖=1 𝑏(𝑖)𝑡 (2) 

Step 3: The test vector pair a and b is given as input.  
Step 4: In the pass forward, b is given as input. Calculate a using Eq. (3).  

 𝑎 = Γ[𝑊𝑏] (3) 

Calculate each element of vector a using Eq. (4). 

 𝑎𝑖′ = 𝑠𝑔𝑛�∑ 𝑤𝑖𝑗𝑏𝑗𝑚
𝑗=1 �,𝑓𝑜𝑟 𝑖 = 1, 2, … ,𝑛  (4) 

Step 5:  Vector a is now given as input to the second layer during the backward 
pass. Calculate the output of this layer using Eq. (5). 

 𝑏′ = Γ[𝑊𝑎] (5) 

Calculate each element of vector b using Eq. (6).  
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 𝑏𝑗′ = 𝑠𝑔𝑛�∑ 𝑤𝑖𝑗𝑎′𝑖𝑛
𝑖=1 �,𝑓𝑜𝑟 𝑗 = 1, 2, … ,𝑚 (6) 

Step 6: Stop the process if there is no further update. Otherwise repeat step 4 
and 5.  

BAM storage capacity:  

The maximum number of pattern pairs that can be stored and successfully 
retrieved is min (m, n). This estimate is heuristic. The memory storage capacity 
of BAM [16] is 

  P ≤ min (m, n) (7) 

6 Counterpropagation Network 

In 1987, Robert Hecht-Nielsen defined the counterpropagation network (CPN). 
The CPN is widely used because of its simplicity and ease of the training 
process. It also has good stats in the representation of the input layer for a wide 
range of environments. It combines an unsupervised training method on the 
Kohonen layer and a supervised training method on the Grossberg layer [17]. 

6.1 Forward Only Counterpropagation 

The training for forward-only counterpropagation is the same as training for full 
counterpropagation. It consists of two phases; the first phase should be 
completed before proceeding to the second phase. The first phase is Kohonen 
learning and the second phase is Grossberg learning. In Figure 4 we can see the 
forward-only counterpropagation network architecture. 
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Figure 4 Forward only counterpropagation architecture. 
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Only the winner unit is allowed to learn or update the weights in the learning 
phase of the Kohonen training. The minimum distance between the weight 
vector and the input vector is calculated to determine the winning unit. Either 
Eqs. (8) or (9) can be used to calculate the distance between two vectors: 

 Dot Product ( z_inj = ∑ xi vij + ∑ yk wkj) (8) 

 Euclidean Distance ( Dj = ∑ (xi – vij)2 + ∑ (yk – wkj)2 ) (9) 

When using dot product, look for results that have the largest value, because the 
larger the value of dot product, the smaller the angle between two vectors will 
become, provided that both vectors are normalized. When using Euclidean 
distance, look for results that have the smallest value, because Euclidean 
distance calculates the physical distance between the two vectors. 

The training algorithm for forward-only counterpropagation is as follows [18]: 

Step 0 : Initialize learning rate and all weights. 
Step 1 : Do step 2-7 as long as the stop condition of the first phase is not met. 
Step 2 : Do step 3-5 for each pair of input x:y. 
Step 3 : Enter input vector x in input layer X. 
Step 4 : Find the winner of the Kohonen layer unit, save its index into variable 

J. 
Step 5 : Update weight for unit Zj using Eq. 10 

 vijnew = (1 - α )vijold + αxi , i = 1 . . . n (10) 

Step 6 : Decrease the learning rate (α). 
Step 7 : Check if the stop condition is met for the first phase. 
Step 8 : Do step 9-15 as long as the stop condition of the second phase has not 

been met (α and β are very small and constant during the second 
phase). 

Step 9 : Do step 10-13 for each pair of input x:y. 
Step 10 : Enter input vector x in input layer X. 
Step 11 : Find the winner of the Kohonen layer unit, save its index into variable 
  J. 
Step 12 : Update the weights that go into Zj using Eq. (11). 

 vijnew = (1 - α )vijold + αxi , i = 1 . . . n (11) 

Step 13 : Update the weights from Zj to the output layer using Eq. (12). 

 wjknew = (1 - α)wjkold + αyk , k = 1 . . . m (12) 

Step 14 : Decrease the learning rate (α). 
Step 15 : Check if the stop condition is met for the second phase. 
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After the training process has been completed, the forward-only 
counterpropagation network can be used to map x into y using the following 
algorithm [18]. 

Step 0 : Use the weight training results. 
Step 1 : Enter input vector x in input layer X. 
Step 2 : Find the winner index unit, save in J. 
Step 3 : Calculate output using Eq. (13). 

 Yk = wjk (13) 

7 Evolutionary Neural Network 

An evolutionary neural network (ENN) is a combination of a neural network 
with an evolutionary algorithm. A common limitation of neural networks is 
associated with network training. Backpropagation learning algorithms have 
serious drawbacks, which cannot guarantee that the optimal solution is given. 
Another difficulty in neural network implementation is related to selecting the 
optimal network topology. Network architecture that is appropriate for certain 
cases are often chosen using heuristic methods. This shortcoming can be 
addressed using an evolutionary algorithm. 

Evolutionary algorithms refer to a probabilistic adaptation algorithm inspired by 
natural evolution. This method follows the statistical search strategies in a 
population of individuals, each representing a possible solution to the problem. 
Evolutionary algorithms can divided into three main forms, namely evolution 
strategies, genetic algorithms, and evolutionary programming [19]. 

The evolutionary algorithm used in this research is a genetic algorithm. The 
genetic algorithm is an effective optimization technique that can help both 
optimizing the weight and selecting the network topology. A problem must be 
represented as a chromosome in order to use a genetic algorithm. When we 
want to look for a set of optimal weights of a multilayer feed-forward neural 
network, the first step in solving this problem is to have the system encode the 
network into a chromosome. This process can be seen in Figure 5 [20]. 

The second step is to define the fitness function in order to evaluate the 
performance of the chromosome. This function must be calculated given the 
performance of the neural network. A simple function from squared errors can 
be implemented. Each chromosome weight is given for each link in the network 
to evaluate the fitness of the chromosomes. Collections of training examples are 
then presented to the network and the number of squared errors is calculated. 
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The genetic algorithm seeks to find the set amount of weight that has the 
smallest squared errors.  

 
Figure 5 Encoding a network into a chromosome. 

The third step is to choose the genetic operators crossover and mutation. The 
crossover operator requires two parent chromosomes and creates a child with 
genetic material from both of its parents. Each gene of the child chromosome is 
represented by the corresponding genes of a randomly selected parent. The 
system is ready to apply the genetic algorithm when the mutation operator 
randomly selects a gene and replaces it with a random result between -1 and 1. 
Users need to define the number of networks with different weights, the 
probability of crossover and mutation, the population number and the number of 
generations [20]. 

8 ICZ-ZCZ 

Image centroid and zone (ICZ) and centroid zone and zone (ZCZ) are feature 
extraction methods that utilize the type of zoning and zone centroid of the zones 
that an image has been divided into. These methods begin with dividing an 
image into several equal zones.  

After dividing the image into equal zones, the ICZ method calculates the 
centroid of the image. For each zone, the average distance between black image 
pixels and the centroid zone is calculated. In the ZCZ method, the centroid of 
the image is calculated instead of the centroid of each zone. And again, for each 
zone, the average distance between black image pixels and the image centroid is 
calculated. The average distances are then used as features for classification and 
recognition [21]. 
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9 Backpropagation 

A backpropagation neural network is a neural network that uses a multilayer 
feed-forward architecture. This method is widely used to solve many problems, 
such as classification, pattern recognition and generalization [22].  

The training algorithms in backpropagation are as follows [23]: 

Feed-forward phase (7 steps): 

Step 0 : Initialize weight (random value between 0-1) and learning rate α 
Step 1 : Do step 2-13 as long as the stop condition is not met 
Step 2 : Perform steps 3-13 as the desired amount of training  
Step 3 : Do steps 4-13 for each hidden layer and output layer 
Step 4 : Calculate the input of each node in the hidden layer using Eq. (14). 

 1
_ *

n

j i ij
i

z in x w
=

=∑
 (14) 

Step 5 :  Calculate the output of each node in the hidden layer activation 
  function using Eqs. (15) and (16) 

 ( _ )j jz f z in=  (15) 

 1
1( )

1 exp( )
f x

x
=

+ −
 (16) 

Step 6 : Calculate the input of each node in the output layer using Eq. (17) 

 
1

_ *
n

k j jk
j

y in z w
=

=∑  (17) 

Step 7 : Calculate the output at each node in the output layer using Eq. (18) 

 ( _ )k ky f y in=  (18) 

Error-backpropagation phase (6 steps): 

Step 8 : Calculate the error of each node in the output layer with the 
  deactivation function using Eqs. (19) and (20) 

 ( )* '( _ )k k k kt y f y inδ = −                                                                       (19)  

 )](1)[()( 11
'

1 xfxfxf −=  (20) 

Step 9 : Calculate the change in weight for each output node in each layer 
  using Eq. (21). 
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 *jk kw α δ∆ =  (21) 

Step 10 : Calculate the error for each node in the hidden layer to deactivate the 
  function using Eq. (22) 

 
1

( * )* '( _ )
n

j k jk k
k

w f z inδ δ
=

= ∑    (22) 

Step 11 : Calculate the change in weight for each node in each hidden layer 
   using Eq. (23) 

 *ij jw α δ∆ =  (23) 

Step 12 : Update the weight for each node in the output layer using Eq. (24) 

 ( ) ( )jk jk jkw new w old w= + ∆  (24) 

Step 13 : Update the weight for each node in each hidden layer using Eq. (25) 

 ( ) ( )jk jk jkw new w old w= + ∆  (25) 

10 Chi2 

The Chi2 algorithm [24] is an algorithm that uses the χ2 statistic to discretize 
numeric valued attributes. This algorithm is quite effective if used in the 
selection of the important features of a group of numerical attributes. By using 
the features that are relevant, this algorithm can speed up the training process 
and improve the prediction accuracy of classification algorithms in general. 
Additionally, there are many classification algorithms that require and work 
better on discrete training data.  

In use, the Chi2 algorithm is divided into two phases. The first phase begins 
with a high enough significance value, e.g. 0.5, for all attributes for 
discretization. The process of merging the data will continue for as long as χ2 
does not exceed the specified significance value (0.5, yielding a value 0.455 
with degree of freedom equal to 1). This phase will be repeated, reducing the 
significance value until the number of inconsistent data in the discretization 
exceeds the specified limit. The equation to calculate the value of χ2 can be 
seen in Eq. (26). 

 x2 = ∑ ∑ (Aij-Eij)2

Eij
k
j=1

2
i=1   (26) 

 k = number of classification, 
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 Aij = number of pattern at interval - i, classification - j 

Eij = the pattern expected from Aij = Ri* Cj N⁄ , if Ri or Cj equal to 0,  

Eij should change to 0.1 

 Ri = number of pattern at interval - i = ∑ Aij
k
j=1  

 Cj = number of pattern at interval - j =∑ 𝐴𝑖𝑗2
𝑖=1  

 N = total number of pattern = ∑ 𝑅𝑖2
𝑖=1  

The second phase is an optimization of the first phase. The most visible 
difference is the calculation of inconsistency. Calculation is done after all the 
attributes have gone through the merger process in the second phase. The 
inconsistency value is calculated at the end of each attribute discretization while 
in the first phase. The second phase will be repeated until there are no longer 
any values of attributes that can be discretized or combined. Inconsistency 
occurs when there are several samples with all of their attributes having the 
same value but they belong to different groups. 

11 Design and Implementation 

The input for the system is a Javanese character digital image. Grayscale 
processing and filtering are done to reduce noise. Subsequently, we apply skew 
detection and correction to straighten skewed images. Later, the segmentation 
process is executed to get each Javanese character using thresholding and 
skeletonizing. Feature extraction is done using ICZ-ZCZ [21] and the features 
will be used as inputs for the artificial neural network.  

Each Javanese character image is divided into 4*5 zones, after which ICZ-ZCZ 
will be performed for each zone, so there are 40 ICZ-ZCZ output values. These 
values will later become artificial neural network input nodes. 

The overall system workflow can be seen in Figure 6.  

The application interface is shown in Figure 7. 

Having obtained the image of each Javanese character from the document and 
having carried out the feature extraction process on each image, the next step 
performed by the system is to identify the characters using the artificial neural 
network methods. After successful recognition, the Javanese character images 
are converted into a textual sequence in a Hanacaraka font and formed into a 
document. 
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Figure 6 System workflow. 

 
Figure 7 Application interface. 

11.1 Dataset for the Experiment 

For the experiment, we used two kinds of datasets of handwritten Javanese 
characters, one dataset for training and the other set for testing. For training 
CPN, BPNN and ENN, the number of data in the dataset was 20 samples for 
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each character. There are in total 31 Javanese characters, so the overall number 
of data was 620 characters. The dataset for testing also consisted of 20 sample 
data for each Javanese character, with the overall data being 620 characters. 
Examples of the sample data can be seen in Figure 8. Every sample data was 
processed by feature extraction using the ICZ-ZCZ method. The 40 value 
results of the feature extraction became the inputs for 40 nodes of the neural 
network input neurons.  

   

Figure 8 Examples of data samples for training and testing process. 

12 Experimental Results 

For pattern recognition of Javanese characters, we used five kinds of artificial 
neural networks, namely bidirectional associative memory, counterpropagation, 
evolutionary, backpropagation and backpropagation combined with chi2.  

The experimental results of bidirectional associative memory (BAM) can be 
seen in Table 2. 

Table 2 Experimental Results of BAM. 

Number of sample Input node Output node Accuracy (%) 
 

2 
 

6 4 100.00 
15 10 0.00 
30 10 0.00 

 
3 
 

6 4 100.00 
15 10 33.33 
30 10 0.00 

 
4 
 

6 4 100.00 
15 10 0.00 
30 10 0.00 

 
6 
 

6 4 66.67 
15 10 0.00 
30 10 0.00 

 
8 
 

6 4 75.00 
15 10 0.00 
30 10 0.00 
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From the experimental results above, we can see that BAM was inaccurate 
when applied to Javanese character recognition. This is because we needed at 
least 40 nodes for the input, while BAM only works well when the number of 
inputs is the same as or less than 6 nodes. For the output we needed 31 nodes in 
this experiment because the total number Javanese characters is 31, while BAM 
only works well for 4 nodes or less. 

Another experiment used a counterpropagation network (CPN), a 
backpropagation network (BPNN) and an evolutionary neural network (ENN) 
with 1 layer and 2 layers. We performed the experiment using a dataset that had 
been trained beforehand and a dataset that had not been trained beforehand.  

The neural network output layer consisted of 31 neurons. These 31 neurons 
were in accordance with the number of Javanese characters used in this 
research: 20 basic (carakan) characters, 4 sandhangan characters, and 7 number 
characters (not all 10 number characters, because 3 number characters have the 
same form as carakan characters). Each neuron has a value of 0 or 1. For the 
first character, the first neuron is 1, while the other neurons are 0. For the 
second character, the second neuron is 1, while the other neurons are 1, etc. The 
number of neurons in the other layer is 60.  

From the experimental results it can be seen that the average recognition 
accuracy of CPN was only about 71% for trained data and 6% for test data (data 
had not been trained beforehand). The average recognition accuracy of ENN 
was about 94% for trained data and about 66% for test data. The parameters 
used for ENN were: the number of neurons for each layer: 60, crossover 
probability: 100%, mutation probability: 50%, maximum population: 50, 
maximum epoch: 10 million, and error limit: 0.1. The average recognition 
accuracy of BPNN was about 79% for trained data and 33% for test data. The 
parameter used for BPNN: input neurons: 40, learning rate: 0.1, error threshold: 
0.001. 

We tried to improve the accuracy of recognition by using an additional method, 
Chi2, and combining it with a backpropagation neural network. The Chi2 
method was used to further increase the variation of the features of each data to 
be trained or recognized. With more data features it was expected that the 
differences in the features of each Javanese character would be accentuated. The 
experiment with a combination of Chi2 and BPNN was done using the 
following parameters: feed-forward network with one hidden layer, number of 
neurons in hidden layer: 60, maximum epoch: 1000, learning rate: 0.1, initial 
input neuron: 40 features combined with output of Chi2 algorithm to become 
440 input neurons (using N=10, for each input will produce 10 outputs), output 
neurons: 31. The overall experimental results can be seen in Table 3 for the 
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experiment using data that had been trained beforehand and Table 4 for the 
experiment using test data. 

Table 3 Experimental results using trained data. 

Javanese  
characters type 

Recognition accuracy (%) 
CPN BPNN ENN 1 layer ENN 2 layers Chi2 and BPNN 

Basic character / 
Carakan 

61.25 66.25 97.75 96.00 98.25 

Numbers 73.57               72.14 97.14 97.86 97.86 
Sandhangan 77.50               78.75 93.75 90.00 97.50 

All characters type 71.45               79.03 94.19 92.26 98.71 

Table 4 Experimental results using test data. 

Javanese  
characters type 

Recognition accuracy (%) 
CPN BPNN ENN 1 layer ENN 2 layers Chi2 and BPNN 

Basic character / 
Carakan 

4.75 32.25 48.75 52.75 65.75 

Numbers 6.43 32.14 58.57 63.57 79.29 
Sandhangan 7.50 36.25 66.25 68.75 83.75 

All characters type 6.29 33.87 50.32 66.29 73.71 

13 Conclusion 

In this research, we have developed a handwritten Javanese character 
recognition system using several artificial neural network methods and 
compared their recognition results. From the experiment that has been executed 
it can be concluded that the bidirectional associative memory method and the 
counterpropagation network method cannot be used for recognition of Javanese 
characters because their average accuracy was very low. The combination of the 
Chi2 method and the backpropagation neural network method performed better 
than the evolutionary neural network method with 1 layer or 2 layers for 
Javanese character recognition. Its recognition accuracy rate reached 98% for 
data that had been trained beforehand and 73% for data that had not been 
trained beforehand. For future research, the accuracy rate may be improved by 
using another method for segmentation and feature extraction that can better 
distinguish similar Javanese characters. Also a combination of Chi2 and ENN 
may be used to improve accuracy. 
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