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Abstract— In this paper, the implementation of a three-phase 
shunt active power filter is presented. The filter is essentially 
three independent single-phase current-controlled voltage source 
inverters (CC-VSI) with a common DC bus.  The CC- VSI is 
operated to directly control the AC grid current to be sinusoidal 
and in phase with the grid voltage. The APF consists of a current 
control loop, which uses polarized ramptime current control and 
a voltage control loop, which employs a simple Proportional 
Integral control. The experimental results indicate that the active 
filter is able to handle predominantly the harmonics, as well as 
the unbalance and reactive power, so that the grid currents are 
sinusoidal, in phase with the grid voltages and symmetrical. 
 
 

I.  INTRODUCTION 
 

Non linear loads, especially power electronic loads, 
generate harmonic currents and voltages in power systems. 
They cause a low power factor, increase the losses and reduce 
the efficiency of the power system, and lead to voltage 
distortion. Passive LC filters can be used to eliminate 
harmonic currents. However, bulk passive components, series 
and parallel resonance, a fixed compensation characteristic 
are the main disadvantages of passive filters. To overcome 
passive filter problems, for many years, various active power 
filters (APF) have been developed [1][2][3].  

Conventionally, the power inverter as a shunt APF is 
controlled in such a way as to inject equal-but-opposite 
harmonic and reactive compensation currents based on 
calculated reference currents. Hence, the current sensors are 
installed on the load side. Then, their output signals will be 
processed to construct the reference or desired currents, which 
consist of harmonic and reactive components as well as 
negative- and zero-sequence components for unbalance 
compensation. Once the desired reference currents have been 
established, the currents must be injected into the grid 
accurately using the power inverter with a current control 
mechanism. The actual inverter currents must attempt to 
follow the harmonic-rich reference currents. 

However, the construction of a reference current waveform 
will introduce distortion or inaccuracies due to filter and 
extensive calculations with inherent delays and errors. 
Furthermore, load or power system changes take time to be 
included by the reference current waveforms. Hence, the 
reference current created for the inverter current will have not 
only significant steady-state error, but also transient error. The 
distortion and inaccuracies can be significantly reduced if 
these computational, filtering and control problems could be 

avoided. Therefore, in this paper, the idea of directly 
controlling the grid/source current to track a three-phase 
balanced sinusoidal reference current rather than the inverter 
current  to follow the harmonic-rich reference current using a 
current controller will be presented. In addition, for selection 
of a current control technique, capability of minimizing ripple 
current using a fixed switching frequency technique is greatly 
desirable so that there is no additional error. Hence, polarized 
ramptime current control (PRCC) based on zero average 
current error (ZACE) will be chosen for this application. 
 
 

II.  ACTIVE FILTER CONFIGURATION 
 

The three-phase shunt active power filter is a three-phase 
four-wire current-controlled voltage-source inverter (CC-VSI) 
with a mid-point earthed split capacitor (C1 and C2) in the DC 
bus and inductors (Linv) in the AC output. The APF consists of 
two control loops, namely a current control loop and a voltage 
control loop. The current control loop is PRCC that shapes the 
grid currents to be sinusoidal by generating a certain pattern 
of PWM for continuous switching of the inverter switches. 
The voltage control loop is a simple Proportional Integral (PI) 
control to keep the DC-bus voltage constant and to provide 
the magnitude of reference current signals. Fig. 1 describes 
the shunt active power filter configuration. 
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Fig. 1: Shunt active power filter configuration 

 
A.  Series Inductance 

Another component of this system is a series inductance LL, 
which value of the reactance XL is comparable to the effective 
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grid impedance, Zg [4][5]. Basically, the inductor provides the 
required voltage decoupling between load harmonic voltage 
sources and the grid. It also enhances the controllability of the 
current controller by reducing the current slope of the loads.  

Without a series inductor, the point of common coupling 
(PCC) is tied to the load harmonic voltage source. The load 
harmonic voltage considerably characterizes the harmonic 
voltage at the PCC. As a result, there would still be harmonic 
voltages across the grid impedance, which would continue to 
produce harmonic currents and could not be compensated for 
by a shunt APF. Currents from the shunt APF do not 
significantly change the harmonic voltage at the loads.  

With a series inductor, for a sinusoidal grid current, the CC-
VSI output current is equal-but-opposite to the unwanted load 
current. These two currents generate identical harmonic 
voltages across the series inductance and the inverter 
inductance (in relative proportion to the inductances). In 
doing so, the CC-VSI generates the output harmonic voltage, 
which is equivalent to the load harmonic voltage. For perfect 
filtering, when no harmonic current flows through the grid 
impedance, a combination of the inverter and the load will be 
seen as infinite impedance for the grid harmonic voltages. The 
circuit equivalent from the harmonic point of view is shown 
in Fig. 2.  

If a fundamental grid current component flows through the 
grid impedance, the voltage across the grid impedance will 
also be a fundamental component. The voltage across the grid 
impedance is represented by the jIg-1Xg phasor (assuming the 
resistance is negligible). With the Vg-1 (the fundamental 
component of the grid voltage) fixed, the grid harmonic 
voltage Vg-h is represented in vector form by a circular region 
added to Vg-1. The voltage at the PCC (Vpcc) can be illustrated 
in Fig. 3. Hence, any harmonic voltage at the PCC actually 
mirrors the grid harmonic voltage. For a harmonic-free grid 
voltage, the voltage at the PCC only contains a fundamental 
component. 

 
B.  Direct Control of the Grid Current 

As seen from Fig. 1, a node, which is a point of common 
coupling (PCC), is created with three connections, one each to 
the load, the grid and the inverter. Accordingly, all three 
currents – iL, ig, and iinv – (for three or four wires) are 
potentially accessible to be directly controlled by the CC-VSI, 
following the basic current summation rule: 

Thus, for the CC-VSI operated to directly control the grid 
current, the current sensors are located on the grid side. The 
grid current is sensed and directly controlled to follow a 
symmetrical sinusoidal reference signal, which is in phase 
with the grid voltage. For perfect tracking, the shunt APF 
automatically provides the harmonic, reactive, negative- and 
zero-sequence currents for the load according to (1) without 
measuring and determining the unwanted load current 
components. Hence, the shunt APF has also the ability to 
balance the asymmetrical currents.  

Moreover, the controllability of the grid current can be 
achieved using bipolar PWM switching. The upper and lower 
power switches of each half-bridge are switched on a 

complementary basis. As a result, the inverter output current, 
as well as the grid current, can always be controlled to ramp 
up and down continuously. Therefore, the direct control of the 
grid current is feasible because the switching action will have 
a direct, immediate and predictable effect on the AC grid 
current, and hence provide the controllability. 

By directly controlling the grid currents, the shunt APF can 
provide complete compensation for many loads at the PCC 
instead of compensating for each load individually. The 
system is simple and efficient because only one current sensor 
per phase is required, located on the grid side. 

In addition, controlling the grid current rather than the 
inverter current allows us to create a sinusoidal current 
reference (for the grid current), rather than having to create a 
harmonic- and transient-rich current reference (for the inverter 
current). The idea to obtain the desired grid current waveform 
instantaneously without calculation is easily fulfilled by using 
an active power balanced technique. The active power is 
maintained balanced among the grid, the load and the DC bus 
of the power inverter. 
 
 

III. THE CURRENT CONTROL LOOP 
 

In the current control loop, the current sensors on the grid 
side detect the grid currents. The outputs of the sensors are 
compared to the three-phase symmetrical sinusoidal reference 
signals, which are in phase with the grid voltages. The current 
error signals, which are the differences between the actual 
currents (grid currents – ig) and the reference signals – ig-ref, 
are processed using polarized ramptime current control 
(PRCC) to generate PWM signals. The pulse signals drive the 
switches so that the VSI produces currents for compensation.  
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Fig. 2: Circuit equivalent for harmonics 
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Fig. 3: Phasor diagram of voltages at the PCC for successful compensation 

ig = iinv + iL (1) 
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The PRCC technique has an important role in enhancing 
the performance and effectiveness of the filter to control the 
current loop of the CC-VSI. The operation principle of PRCC 
is based on ZACE (zero average current error) [6][7]. The 
current error signal is forced to have an average value equal to 
zero with a constant switching frequency. The PRCC 
maintains the area of positive current error signal excursions 
equal to the area of negative current error signal excursions, 
resulting in the average value of the current error signal being 
zero over a switching period (Fig. 4). The switching period 
(or frequency) is also kept constant based on the choice of 
switching instants relative to the zero crossing times of the 
current error signal. The PRCC has a high bandwidth with a 
fast transient response that can quickly follow the rapid 
changes in non linear loads.  

In order to observe the current-control operation, the single-
phase equivalent circuit as shown in Fig. 5 is examined. 

 
A.  Operating condition requirement 

Neglecting the losses in the inverter, the output current for 
each phase of the inverter through the inductance Linv can be 
expressed in a switching function (s) as:  

))1((
1

21 CCpcc
inv

inv vsvsv
Ldt

di −−−=  (2) 

s = 1 if the upper switch is closed, and s = 0 if the upper 
switch is open. It must be assumed that vpcc, vC1 and vC2 are 
constant over the switching period. The switches are operated 

on a complementary basis.  For 0>
dt

diinv , then  

0)1( 21 >−−− CCpcc vsvsv  (3) 
To satisfy this condition, the relationship between DC-

capacitor voltages and the voltage at the PCC in terms of the 
switching function is given by: 

If s = 1, then vC1 < vpcc 
If s = 0, then – vC2 < vpcc 

(4) 

Values of vC1 and vC2 are always positive. For s = 1, the 
system does not work during the negative half-cycle of vpcc . 
For s = 0, any value of vC2 will satisfy (4) during the positive 
half-cycle of vpcc . For the negative half-cycle of vpcc , the 

inverter functions well, as long as pccC vv >2 .  

For 0<
dt

diinv , then 

0)1( 21 <−−− CCPCC vsvsv  (5) 
To satisfy (5), the relationship between the DC-capacitor 

voltages and the voltage at the PCC in terms of the switching 
function is given by: 
If s = 1, then vC1 > vpcc 
If s = 0, then – vC2 > vpcc 

(6) 

In this case, the system is unlikely to be operated at s = 0 
during the positive half-cycle of vpcc. For s = 1 during the 
negative half-cycle of vpcc , any value of vC1 will satisfy (6). 
During the positive half-cycle of vpcc , the inverter functions 

well as long as pccC vv >1 . 

 

 
Fig. 4: Zero average current error (ZACE) 

 
Fig. 5: Single-phase equivalent circuit 

 
Therefore, for both cases, the inverter always generates 

currents as long as the magnitude of both DC-capacitor 
voltages (vC) is greater than the peak value of the PCC voltage 
(vpcc-peak). If this condition is not achieved, then the required 
operating condition for the system is not provided, and the 
compensation fails completely. 

 
B.  Controllability condition 

The PRCC has characteristics similar to a sliding mode 
control [6][8]. Therefore, the current error signal , which is a 
controlled parameter, can be defined as a sliding surface. 

� �Lg – ig-ref (7) 
To ensure that the system can remain on the sliding surface 

and maintain perfect tracking, the following condition must 
be satisfied: 

0≤εε �  (8) 

where ε�  is derived from (7): 

From the switching operation implementation, the ε�  is 
able to be controlled such that a positive value of the error 
signal produces a negative derivative of the error signal 

)0( <ε� , and a negative value of the error signal produces a 
positive derivative of the error signal )0( >ε� . Controlling the 
sign of ε�  is associated with controlling the sign of dig/dt to be 
positive or negative.  

Referring to the filter operation by controlling the grid 
currents, and combining (1) and (9), G �GW can be expressed 
as: 

dt

di

dt
di

dt
di

dt
d refginvL −−+=ε

 (10) 

Since the sign of diinv /dt and dig /dt are matching, perfect 
tracking can be achieved when: 

dt

di

dt

di

dt
d refgg −−=ε

 (9) 
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dt

di

dt
di

dt
di refgLinv −+>  (11) 

As long as equation (11) is not satisfied, then the system is 
moving away from the sliding surface, and the CC-VSI loses 
its controllability. This means that zero crossing of the current 
error signal will not occur at the end of a half-switching 
period, since by definition, the system is controllable if there 
exists a (piecewise continuous) control signal that will take 
the state of the system from any initial state to any desired 
final state in a finite time interval [9]. Refer to (2), diinv/dt is 
normally determined by Linv dan capacitor voltages. 

 
 

IV. THE VOLTAGE CONTROL LOOP 
  
In order to satisfy the operating condition requirement of 

the current control loop, the DC-capacitor voltages have to be 
forced greater than vpcc-peak. In addition, the DC-bus voltage 
has to be kept constant by regulating the active power balance 
of the system, and then deciding the amplitude of the grid 
currents. The voltage control loop employs a Proportional 
Integral (PI) controller to maintain the desired DC-bus voltage 
level. 

 
A.  Power flow 

Power flowing in the grid, the load and the inverter is 
expressed in terms of real power p, imaginary power q, and 
zero sequence power p0 [10][11][12], which consist of an 
average value and an oscillating value. 

Considering a non-sinusoidal and unbalanced system, the 
load power can be decomposed into:   

LLL ppp ~+=  

LLL qqq ~+=  

000
~

−−− += LLL ppp  
(12) 

Due to successful compensation for the unwanted currents 
of the load, the grid currents will be sinusoidal, balanced and 
in-phase with the grid voltages. As a result, if the grid voltage 
is non-sinusoidal and/or unbalanced, the powers pg, qg and pg-0 
generated from the grid become: 

ggg ppp ~+=  

gg qq ~=  

00 =−gp  

(13) 

The power developed by the inverter is calculated by 
subtracting the power supplied by the grid and the power 
consumed by the load, given by: 
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 (14) 

From (14), the inverter controls the whole imaginary power 
associated with the load LL qq ~+  and the grid gq~ (in a small 

value). However, the DC bus does not contain imaginary 
power. The CC-VSI generates qinv but it does not flow out of 
or into the DC-bus capacitors. According to Watanabe [11] 
and Peng [12], the imaginary power circulates among the 

phases due to the switching of the inverter. In other words, 
instantaneously, the imaginary power required by one phase 
can be supplied by the other phase. 

For the average value p of the real power, the inverter 

supplies the zero sequence average (active) power 0−Lp  
needed by the load. To supply the load zero sequence active 
power, the inverter has to take an active power from the grid 
because the inverter has no DC source. Neglecting the losses 
in the power converter, in steady state, the active power 
consumed by the load is equal to the active power supplied by 
the grid, and total active power flowing to the inverter is zero. 
The active power balance according to (14) can be stated as: 

000 =−−=+ −− LLginvinv ppppp . Thus, the active power 

taken from the grid by the inverter, which is used to support 
the zero sequence power delivered to the load, is: 

0−=−= LLginv pppp . Additional active power consumption 

is required to compensate for the losses, so that 
lossLinv ppp += −0 .   The active power balance  is regulated 

by the voltage control loop to retain the DC-bus voltage 
around its reference level.  

The inverter supplies Lp~  as well as 0
~

−Lp  and consumes 

gp~  (in a small value) using DC capacitors as an energy 

storage element. The DC capacitors absorb (release) energy 
when p~  is positive (negative). This power does not affect the 
DC-bus voltage level since its mean value equals to zero. 
However, it will appear in the DC-bus voltage as a ripple. The 
ripple becomes small if the value of DC capacitors is high.   

 
B.  DC-bus voltage control system 

For successful compensation, the grid current is the same as 
its reference. To obtain the reference signal, only one phase of 
the three-phase grid voltage is detected as the reference phase. 
Afterwards, a three-phase symmetrical sinusoidal waveform 
is generated using a phase lock loop (PLL) circuit. Only the 
magnitude of the grid current needs to be determined. 

As mentioned above, in steady state and ignoring the 
losses, the active power consumed by the load is equal to the 
active power supplied by the grid, and invp  will be zero. With 
no power flow into the inverter, the average DC-bus voltage 
thus can be maintained at the reference voltage level. 

When a load variation occurs, the active power balance 
between the load and the grid will cease to be maintained. The 
inverter immediately supplies (absorbs) the active power 
mismatch between the grid and the load, since the voltage 
control loop cannot respond instantaneously to provide the 
appropriate grid reference current magnitude. This yields a 
DC-bus voltage deviation (∆Vdc).  

Due to active power balance, the amplitude of grid active 
currents must be adjusted appropriately to compensate for the 
active power charged/discharged from DC capacitors of the 
inverter. The required change in grid currents will come as 
soon as the voltage control loop responds to change (increase 
or decrease) in the magnitude of the grid currents. The output 
of the PI controller, which is a gain k, can determine the 
amount of ∆Vdc that corresponds to the grid current amplitude 
(Fig. 6). The total active power flowing to the inverter will go 
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to zero when the grid current amplitude approaches its final 
value. The average DC bus voltage is then recovered and 
stays at the reference voltage. Finally, the active power 
supplied from the grid is matched to that consumed by the 
load. A new steady state has been achieved with a new grid 
current amplitude. Hence, the sinusoidal grid current 
reference signal is given by: 

ig-ref = k vgrid-1 (15) 

where vgrid-1 is the fundamental component of the grid 
voltage, and obtained from a phase-lock-loop (PLL) circuit 
detecting the grid voltage. The value of  k  is obtained from 
the output of a simple PI controller in an voltage control 
loop regulating the CC-VSI DC-bus voltage. 

The voltage control loop block diagram is shown in Fig. 6. 
Considering a perfect tracking current control loop, the grid 
current is the same as its reference. The inverter DC-bus 
voltage is detected and reduced by a gain Kf to the level of a 
signal. Since the DC-bus voltage contains ripples, a first-order 
low-pass filter (LPF) is added to the feedback loop to obtain a 
smooth gain k. The output of the PI controller, which is a gain 
k, is multiplied by vg-1, which is the fundamental component 
of the grid voltage obtained from a PLL circuit and then used 
as a reference waveform. The inverter currents will flow 
through the switches to the DC capacitors to develop the DC-
bus voltage. KC is a power conversion factor between the AC 
side and the DC side of the power converter. 

 
 

V.  THE THREE-PHASE SHUNT ACTIVE POWER 
FILTER FOR MIXED LOADS 

 
The system in Fig. 1 is tested using laboratory experiment 

to verify the shunt APF concepts. The three-phase grid 
voltages contain harmonics, and the mixed loads consist of 
single- and three-phase linear and non-linear loads. The linear 
loads are resistive and inductive loads, while the non-linear 
loads are a rectifier type of loads. The loads represent the 
distributed linear and non-linear loads, which exist in a typical 
electrical distribution system such as in commercial buildings. 
The three-phase current waveforms along with their harmonic 
spectrums of the mixed loads, as well as the neutral current 
from the laboratory experiment, are shown in Fig. 7. It shows 
clearly that the currents are not sinusoidal. The load phase-
currents are also unbalanced and contain reactive 
components. The significant third-harmonic current flows in 
the neutral wire. 

Fig. 8 demonstrates the steady-state performance of 
compensation results. It can be seen that the shunt APF is 
successfully able to compensate for the total mixed loads. 
Although the grid voltage contains harmonics, it does not 
distort the grid currents. The PRCC can force the grid currents 
to follow accurately the sinusoidal reference waveforms 
without additional low order harmonics. The grid currents 
become both sinusoidal and in phase with the grid voltages 
(with insignificant phase leading by approximately 5o due to 
AC filter capacitors (Cac) – in Fig. 9, only phase A of the grid 
voltage is shown). The amplitude is determined by the active 
power required by the system. The PRCC VSI is capable of 
controlling the low order harmonics due to ZACE with a 

fixed switching frequency. However, it produces a high 
frequency switching current ripple. To avoid the current 
ripple flowing to the grid, small AC filter capacitors (Cac) are 
installed on the grid side. 

After compensation, the grid currents are symmetrical both 
in magnitude and phase. As a result, the neutral current at the 
grid is also reduced to zero. The grid currents are balanced 
because the CC-VSI is able to force the grid currents to 
follow a three-phase balanced sinusoidal reference signal. 
Then, the inverter creates the inverse of the negative- and zero 
sequence currents automatically to balance the unbalanced 
loads, without measuring and determining the negative- and 
zero sequence components. From Fig. 10, it is obvious that 
the CC-VSI is able to generate three different currents for 
each phase as well as the neutral current. Hence, the inverter 
not only generates harmonics to eliminate the load harmonics 
but also provides balancing to create the symmetrical grid 
currents.  
 
 

VI. CONCLUSION 
 

This paper explains the implementation of a three-phase 
four-wire shunt active power filter (APF) operated to directly 
control the AC grid current to be sinusoidal and in phase with 
the grid voltage. By doing this, the three-phase shunt APF 
automatically provides compensation for harmonics, reactive 
power and unbalance without measuring/sensing the load 
currents. The computational, filtering and control problems 
can be avoided so that the distortion and inaccuracies 
problems can be significantly minimized. The experimental 
results prove the validity of the concept.  

The polarized ramptime current control (PRCC) is very 
effective to shape the grid to be sinusoidal without additional 
low order harmonics due to the concept of zero average 
current error (ZACE) with fixed switching frequency. Thus, it 
is suitable for the grid current-controlling shunt APF. 

There are many advantages to directly control the grid 
current. Firstly, it is easy to create a simple sinusoidal 
reference for the grid current using the active power balance 
method. The reference current is an appropriate reference to 
minimize the grid harmonic currents. Secondly, the grid 
currents produced will be sinusoidal, balanced and in phase 
with the grid voltage regardless of grid voltage conditions. 
Thus, it prevents (more) pollution of the electrical system 
from non-linear loads. Moreover, the control mechanism 
becomes very simple.  
 

KC
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Fig. 6: Voltage control loop 
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Fig. 7: phase and neutral currents for mixed loads 
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Fig. 8: phase and neutral currents of the grid after compensation 
 
 

 
Fig. 9: phase-A grid voltage and current after compensation 

 
 

Fig. 10: phase and neutral currents of the CC-VSI 
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