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Abstract  An enhancement of the finite element method using Kriging shape functions (K-FEM) was 
recently proposed.  Since then the K-FEM has been improved and applied to solve various problems in 
continuum mechanics.  This method is as simple as the conventional FEM in view of the formulation and 
implementation and yet it is as flexible as mesh-free methods in term of customizing the interpolation 
function for a desired degree of consistency.  However, the interpolation function between two boundary 
nodes is not fully closed.  This causes incompatibility and consequently the convergence of the solutions is 
questionable.  In this paper, the convergence characteristics of the K-FEM with different options of the 
basis function, number of layers and correlation function were scrutinized through a series of weak patch 
tests for plane stress and Reissner-Mindlin plate problems.  In addition, a benchmark plane stress problem 
was solved to illustrate the convergence of the method with various options.  A relative L2 norm of error or 
relative error of strain energy was used to measure the accuracy.  The results reveal that the K-FEM passes 
the weak patch tests for most of the options.  Basically, the incompatibility in the K-FEM tends to decrease 
as the mesh is refined.  The K-FEM with quartic spline correlation function generally has better 
convergence characteristic than that with the Gaussian.   
 
Key words:  finite element, Kriging, convergence, patch test, Reissner-Mindlin 
 
INTRODUCTION  
 

In the past two decades various mesh-free methods have been developed and applied to solve problems in 
continuum mechanics (e.g., see [1], [2]).  These methods have drawn attentions of many researchers partly 
due to their flexibility in customizing the approximation function for desired accuracy.  Of all the 
mesh-free methods, the methods using the Galerkin weak form such as the element-free Galerkin method 
(EFGM) [3] and point interpolation methods [1: pp.250-300] have the same basic formulation with FEM.  
Although the EFGM and its variants have appeared in many academic articles for more than a decade, up 
to now they seem to find little acceptance in real practice.  This is in part due to the inconvenience in their 
implementation, such as difficulties in constructing mesh-free approximations for highly irregular 
problem domains and in handling problems of material discontinuity [1: pp.15 and 644]. 
 
A very convenient implementation of EFGM was recently proposed [4].  Following the work of Gu [5], 
Kriging interpolation (KI) was used as the trial function.  Since KI passing through the nodes (posses the 
Kronecker delta property), there is no need for special treatment of boundary conditions.  For evaluating 
the integrals in the Galerkin weak form, finite elements were used as the integration cells.  The KI was 
constructed for each element by the use of a set of nodes in a domain of influence (DOI) composed of 
several layers of elements (the DOI is in the form of polygon for 2D problems).  With this way of 
implementation, the EGFM of Plengkhom and Kanok-Nukulchai [4] can be viewed as a subclass of FEM 
with Kriging shape functions.  This method is referred to as Kriging-based FEM (K-FEM) in this paper.  
The K-FEM retains the advantages of mesh-free methods as follows: 
 
1. Any requirement for high order shape functions can be easily fulfilled without any change to the 

element structure. 



2. The field variables and their derivatives can be obtained with remarkable accuracy and global 
smoothness. 

 
A distinctive advantage of the K-FEM over other mesh-free methods is that it inherits the computational 
procedure of FEM so that existing general-purpose FE programs can be easily extended to include this 
new method.  Thus, the K-FEM has a higher change to be accepted in practical applications. 
 
In the K-FEM, the interpolation functions are not continuous (incompatible) along the interfaces of 
elements [6, 7] due to the possible opening of the support edges along nodal intervals.  Due to this 
incompatibility, doubt on the convergence of the method naturally comes up.  However, the convergence 
of the K-FEM has not been studied in the previous literature [4, 8].  In the present paper, the convergence 
of the method was scrutinized by means of a series of weak patch tests for plane stress and 
Reissner-Mindlin plate problems.  A relative L2 norm of error or relative error of strain energy was used to 
measure the accuracy.  Detail studies on convergence characteristics of the K-FEM with different options 
of the basis function, number of layers and correlation function were performed.  In addition, an example 
of benchmark plane stress problem was used to illustrate the convergence of various versions of the 
K-FEM.  It is the intention of this paper to assess the convergence of the K-FEM with different options.   
 
KRIGING INTERPOLATION 
 

This section presents a review of the KI formulation in the context of K-FEM.  A detail explanation and 
derivation of Kriging may be found in References [6, 7, 9, 10]. 
 
Formulation 

Consider a continuous field variable u(x) defined in a domain Ω.  The domain is represented by a set of 
properly scattered nodes xi, i=1, 2, …, N, where N is the total number of nodes in the whole domain.  Given 
N field values u(x1), …, u(xN), the problem is to obtain an estimate value of u at a point . 0 ∈Ωx
 
The Kriging estimated value uh(x0) is a linear combination of u(x1), …, u(xn), i.e. 
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where λi’s are termed as (Kriging) weights and n is the number of nodes surrounding point x0 inside a 
sub-domain .  This sub-domain is referred to as domain of influence (DOI) in this paper.  
Considering each function values u(x

0Ω ⊆Ωx

1), …, u(xn) as the realizations of random variables U(x1), …, U(xn), 
Eq. (1) can be written as 
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The Kriging weights are determined by requiring the estimator Uh(x0) is unbiased, i.e.  
h
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and by minimizing the variance of estimation error, h
0var ( ) ( )U U⎡ ⎤−⎣ ⎦x x .  Using the method of Lagrange 

for constraint optimization problems, the requirements of minimum variance and unbiased estimator lead 
to the following Kriging equation system: 

0( )+ =Rλ Pµ r x  (4a) 
T

0( )=P λ p x  (4b) 
in which  



11 1

1

( ) ... ( )
... ... ...
( ) ... ( )

n

n n

C C

C C

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

h h
R

h h n n

 ;      ; (4c) 
1 1 1

1

( ) ... ( )
... ... ...
( ) ... ( )

m

n m

p p

p p

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

x x
P

x x

[ ]T1 ... nλ λ=λ  ;      [ ]T1 ... mµ µ=µ  (4d) 

[ ]T0 10 20 0( ) ( ) ( ) ... ( )nC C C=r x h h h  ;      [ ]T0 1 0 0( ) ( ) ... ( )mp p=p x x x  (4e) 

R is  matrix of covariance between U(x) at nodes xn n× 1, …, xn;  P is n m×  matrix of polynomial values 
at the nodes;  λ is  vector of Kriging weights;  µ is 1n× 1m×  vector of Lagrange multipliers;  r(x0) is 1n×  
vector of covariance between the nodes and the node of interest, x0; and p(x0) is  vector of 
polynomial basis at x

1m×
0.  In Eqs. (4c) and (4e), ( ) cov ( ), ( )ij i jC U U⎡ ⎤= ⎣ ⎦h x x  .  Kriging weights λ are 

obtained by solving the Kriging equations, Eqs. (4a) and (4b).   
 
The expression for the estimated value uh given by Eq. (1) can be rewritten in matrix form, 

h T
0( )u =x λ d  (5) 

where [ ]T1( ) ... ( )nu u=d x x  is  vector of nodal values.  Since the point x1n× 0 is an arbitrary point in 
the DOI, the symbol x0 can be replaced by symbol x.  Thus, using the usual finite element terminology, Eq. 
(5) can be expressed as 
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in which N(x)= λT(x).   
 
Two key properties of Kriging shape functions that make them appropriate to be used in the FEM are 
Kronecker delta (or interpolation) property and consistency property [5, 6].  Due to the former property KI 
exactly passes through the nodal values.  The consequence of the latter property is that if the basis includes 
all constants and linear terms, the Kriging shape functions are able to reproduce a linear polynomial 
exactly. 
 

 
Fig. 1  Domain of influence for element el with one, two and three layers of elements [4] 

 
Layered-Element Domain of Influence 

Let us consider a 2D domain meshed with triangular elements, such as illustrated in Fig. 1.  For each 
element, KI is constructed based upon a set of nodes in a polygonal DOI encompassing a predetermined 
number of layers of elements.  The KI function over the element is given by Eq. (6).  By combining the KI 
of all elements in the domain, the global field variable is approximated by piecewise KI.  This way of 
approximation is very similar with the approximation in the conventional FEM.   
 



Within each element the interpolation function is naturally continuous.  However, along the element edges 
between two adjacent elements the function is not continuous because the KI for each neighboring element 
is constructed using different set of nodes.  Thus the present method is nonconforming.   
 
The number of layers for each element must cover a minimum number of nodes in such way that Kriging 
equation system, Eqs. (4a) and (4b), is solvable.  If an m-order polynomial basis is employed, the DOI is 
required to cover a number of nodes, n, that is equal or greater than the number of terms in the basis 
function [4].   
 
Polynomial Basis and Correlation Function 

Constructing Kriging shape functions in Eq. (6) requires a polynomial basis function and a model of 
covariance function.  For the basis function, besides complete polynomial bases, it is also possible to use 
incomplete polynomial bases such as bi-linear, bi-quadratic and bi-cubic bases [11].   
 
Covariance between a pair of random variables U(x) and U(x+h) can be expressed in terms of correlation 
coefficient function or shortly, correlation function, i.e. 2( ) ( ) /Cρ σ=h h , where [ ]2 var ( )Uσ = x .  
According to Gu [5], σ2 has no effect on the final results and so in this study it is taken as 1.  One of the 
widely used correlation model in the area of computational mechanics is the Gaussian correlation function 
[4-8], viz. 

2( ) ( ) exp( ( / ) )h hρ ρ θ= = −h d  (7) 

where θ>0 is the correlation parameter, h = h , i.e. the Euclidean distance between points x and x+h, and 
d is a scale factor to normalize the distance.  In this study, d is taken to be the maximum distance between 
any pair of nodes in the DOI.  Besides the Gaussian, we recently introduced the quartic spline (QS) 
correlation function [6, 8] as follows: 
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Our study [6] shows that with this correlation function, Kriging shape functions are not very sensitive to 
the change in parameter θ.   
 
The proper choice of parameter θ is very important because it affects the quality of KI.  In order to obtain 
reasonable results in the K-FEM, Plengkhom and Kanok-Nukulchai [4] suggested a rule of thumb for 
choosing θ, i.e. θ should be selected so that it satisfies the lower bound, 

10
1

1 1 10n a
ii

N − +
=

− ≤ ×∑  (9) 

where a is the order of basis function, and also satisfies the upper bound,  

det( ) 1 10 b−≤ ×R  (10) 

where b is the dimension of problem.  For 2D problem with cubic basis function, for example, a=3 and 
b=2.   
 
Numerical investigations on the upper and lower bound values of θ [6, 8] revealed that the parameter 
bounds vary with respect to the number of nodes in the DOI.  Based on the results of the search for the 
lower and upper bound values of θ satisfying Eqs. (9) and (10), we proposed explicit parameter functions 
for practical implementation of the K-FEM as follows: 

For the Gaussian correlation parameter, the parameter function is 
low up(1 )f fθ θ θ= − + ,      (11a) 0 0f≤ ≤ .8



where f is a scale factor, θlow  and θup are the lower and upper bound functions as follows: 
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For the QS correlation parameter, the parameter function is 
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NUMERICAL TESTS 
 

To study the convergence of the present K-FEM, two measures of error were utilized.  The fist one is 
relative L2 norm error of displacement and the second one is relative strain energy error.  They are defined 
as follows: 
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In this equation, uapp and uexact are approximate and exact displacement vectors, respectively, and εapp and 
εexact are approximate and exact strain vectors, respectively.  For computing these relative errors, the 
13-point quadrature rule for triangles was employed for each element.   
 
Element stiffness matrices were computed using the 6-point quadrature rule for triangles.  The 6-point rule 
was elected because it can give reasonably accurate results yet inexpensive in terms of computational cost.  
For computing the nodal force vector in plane stress problems, the 2-point Gaussian quadrature for line 
integral was used.  In Reissner-Mindlin plate problems, element nodal force vectors were computed using 
the 6-point quadrature rule.   
 
Abbreviations in the form of P*-*-G* or P*-*-QS, in which the star denotes a number, were adopted in this 
section to designate various options of the K-FEM.  The first part of the abbreviation denotes polynomial 
basis with the order indicated by the number next to letter P.  The middle part denotes number of layers.  
The last part, G* denotes the Gaussian correlation function with the adaptive parameter given by Eq. (11a) 
and with the scale factor f indicated by the number next to letter G (in percent); QS denotes the quartic 
spline correlation function with the adaptive parameter given by Eq. (12).  For example, P3-3-G50 means 
cubic basis, 3 element-layers, Gaussian correlation function with mid-value parameter function, i.e. f=0.5. 
 
Weak Patch Tests for Plane Stress Problems 

Patch test is a test to a “patch” of finite elements with states of constant strains or constant stresses.  Since 
the K-FEM is nonconforming, it will not pass the patch test for a patch with a large size of elements.  
Passing the patch test for a large size of elements, however, is not a necessary condition for convergence.  
The necessary and sufficient condition for convergence is to pass the patch test in the limit, as the size of 
the elements in the patch tends to zero [12: p.254, 13], provided that the system of equations is solvable 
and all integrations are exact.  This kind of test is referred to as weak patch test [12: pp.250-275, 14: 
p.240].   
 



The patch used in this test is a rectangular domain of 0.24 by 0.12 with modulus of elasticity E=106 and 
Poisson’s ratio ν=0.25.  It was adopted from the patch proposed by MacNeal and Harder [15].  For plane 
stress condition, force boundary conditions as shown in Fig. 2 were used.  In order to be consistent with 
displacement field , , 310 ( / 2)u x y−= + 310 ( / 2)v y x−= + 30.24 10u −= ×  and 30.12 10v −= ×  were 
prescribed at node B.  The initial course mesh, which includes 25 nodes, is shown in Fig.3.  We define the 
element characteristic size for this mesh hc=0.06.  Subsequently, mesh refinements were performed by 
subdividing the elements.   
 

 
 

Fig. 2  A patch under constant stress  
Fig. 3  Initial mesh of the domain for weak patch 

test 
 
The following K-FEM options were elected for the weak patch test:  P2-2 with G0, G50, G80, QS and P3-3 
with G0, G50, G80, QS.  Displacement error norms of the K-FEM solutions were plotted against element 
characteristic sizes in Fig. 4.  The average convergence rate (R) of each option was also shown in the 
legends.  The figure shows that the K-FEM does not pass the test in any mesh but the solutions converge.  
For the K-FEM of option P3-3-G0, however, the convergence is doubtful.  Therefore, we conclude that the 
K-FEM passes the weak patch test, except that with option P3-3-G0.  For the K-FEM with Gaussian 
correlation functions, as the parameter θ comes closer to the upper bound values, the convergence rate and 
accuracy increase.  The K-FEM with the QS is the best in term of convergence rate (R=1.45 for P2-2 and 
R=1.82 for P3-3).   
 

 
(a) P2-2 

 
(b) P3-3 

Fig. 4  Relative L2 norm errors of displacement and convergence rates for the patch analyzed using the 
K-FEM with: (a) P2-2, (b) P3-3.  The number after the code for K-FEM option in the legend 
indicates the average convergence rate. 

 
The strain energy error norms vs. element characteristic sizes were shown in Fig. 5.  These energy errors 
are mainly due to “gaps” or “overlaps” along the interface between two elements because the round-off 
and numerical integration errors are negligible.  Therefore, in this case the energy error may serve as a 
measure of the degree of incompatibility of the K-FEM.  The figure shows that the incompatibilities of the 



K-FEM with various options tend to decrease as the mesh was refined.  The K-FEM with QS correlation 
function is “more compatible” than that with the Gaussian.   
 

 
(a) P2-2 

 
(b) P3-3 

Fig. 5  Relative strain energy errors and convergence rates for the patch analyzed using the K-FEM with: 
(a) P2-2, (b) P3-3   

 
Weak Patch Tests for Reissner-Mindlin Plates 

The same patch and meshes were used in the following tests.  Two conditions of the patch were 
considered, namely (1) constant curvature and (2) constant transverse shear strain.  The 
length-to-thickness ratio of the patch was differently specified for each condition of the tests.  Based on the 
study on the performance of various K-FEM options in alleviating shear locking [16], the following 
K-FEM options were elected for the patch tests: P3-3-G0, P3-3-QS, P4-4-G0, and P4-4-QS.   
 
Constant curvature condition 

The boundary of the patch was imposed by the essential boundary conditions as presented in MacNeal and 
Harder [15], i.e. 

3 2 210 ( ) / 2w x xy y−= + +  ;   310 ( / 2)x w x x yψ −= ∂ ∂ = +  ;   310 ( / 2 )y w y x yψ −= ∂ ∂ = +  (14) 

where w, ψx and ψx represent the deflection, rotations with respect to the –y and x directions, respectively.  
These fields lead to the following constant curvatures and moments: 

{ }T 31 1 1 10−= ×κ   ;   { }T 710 / 9 10 / 9 1/ 3 10−= − ×M  (15) 

Shear strains and shear stresses corresponding to these constant curvatures are zero.  The length-to- 
thickness ratio of the patch was set to 240 (h=0.001) in order to represent thin plates.   
 
Displacement error norms of the K-FEM solutions were plotted against element characteristic sizes in Fig. 
6.  It can be seen that from the second mesh (hc =0.03) until the last mesh (hc =0.0075) the solutions of the 
K-FEM converge, except for the K-FEM with option P3-3-G0.  The solutions for the mesh of hc=0.06 (25 
nodes) are exceptionally accurate because 16 of the 25 nodes are located at the boundary and accordingly 
imposed by the boundary conditions, Eq. (14).  Thus, the nodal displacements associated with the 16 
boundary nodes are automatically exact.  In addition, for cases of relatively small number of nodes in a 
domain, the K-FEM may yield extraordinary accurate results because the KI is close to a polynomial 
function of higher order than the basis function.  We conclude that the K-FEM with options P3-3-QS, 
P4-4-G0, and P4-4-QS pass the weak constant curvature patch test but the K-FEM with P3-3-G0 does not 
pass.  The K-FEM with QS correlation function has better convergence characteristic than that with G0.  
This finding is similar to the one in the plane stress condition.   
 
 
Constant transverse shear-strain condition 

A state of constant transverse shear strains and zero curvatures, i.e.  



{ }T 61 1 10s
−= ×ε   ;   { }T0 0 0=κ  (16) 

can be obtained, with all equilibrium equations satisfied, only for the extreme case of thick plates [17].  In 
this test, an extremely-thick plate with the length-to-thickness ratio 0.0024 (h=100) was considered.  The 
displacement fields leading to the constant shear strains, Eq. (16), are as follows: 

610 ( ) / 2w x y−= +  ;   61/ 2 10xψ −= − ×  ;   61/ 2 10yψ −= − ×  (17) 

The shear forces corresponding to the constant shear strains are { }T100 / 3 100 / 3=Q . 
 

 
Fig. 6  Displacement error norm vs. element 

characteristic size for the constant 
curvature patch test.  The numbers in the 
legend indicate the average convergence 
rates from the second mesh up to the last. 

 
Fig. 7  Deflection error norm vs. element 

characteristic size for the constant shear 
patch test.  The numbers in the legend 
indicate the average convergence rates. 

 
The test was performed by imposing nodal values on the boundary according to the fields stated by Eq. 
(17).  The error indicator used in this test is the relative L2 norm of deflection error, defined as 
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This indicator was used here instead of the displacement error norm, Eq. (13), because the thickness of the 
plate is extremely large so that if we used the error norm of Eq. (13), the norm would be dominated by the 
rotation errors.  We found that these rotation errors are relatively constant for different degrees of mesh 
refinements.   
 
The plot of the relative deflection error norms for the K-FEM with different analysis options is shown in 
Fig. 7.  It can be seen that all of the options lead to converging solutions and therefore they pass the weak 
constant shear patch test.  As in the previous test, the accuracy and convergence rate of the K-FEM with 
QS is better than that with G0.   
 
An Infinite Plane-stress Plate with a Hole 

An infinite plane-stress plate with a circular hole of radius a=1 is subjected to a uniform tension Tx=100 at 
infinity [18] (Fig. 8).  Owing to symmetry, only the upper right quadrant of the plate, 0 5  and 

, was analyzed.  Zero normal displacements were prescribed on the symmetric boundaries and 
the exact traction boundary conditions were imposed on the right (x=5) and top (y=5) edges.   

x≤ ≤
0 y≤ ≤ 5

 
The initial course mesh of 42 nodes is shown in Fig. 9.  The element characteristic size for this problem is 
taken as the distance between two nodes at the right or top edge, i.e. hc=1.  Subsequently, the mesh was 
refined by subdividing the previous element into four smaller elements.  The refined meshes considered in 
this test are meshes with hc=0.5 (141 nodes) and hc=0.25 (513 nodes).  In performing the analysis with 



hc=0.25 using Gaussian correlation function, the scale factor f=0.79 was used in place of f=0.8 because the 
use of f=0.8 resulted in det(R) exceeding the upper bound criterion, Eq. (10), for some elements.   
 

 
 

Fig. 8  An infinite plate with a circular hole 
 

Fig. 9  Initial mesh for the holed plate 
 
The convergence characteristics for displacement and strain energy are shown in Figs. 10 and 11, 
respectively.  The figures show that the rates of convergence of all K-FEM options are nearly equal, for 
displacement as well as strain energy.  The fastest convergence rate in term of displacement error is 
achieved by the K-FEM with P3-3-G80 (the rate, R=2.60) while the fastest one in term of strain energy 
error is the K-FEM with P3-3-QS (R=1.37).  Theoretically, the accuracy and convergence rate of the 
K-FEM with cubic basis are higher than those with quadratic basis.  However, this is not the case here 
because of the incompatibilities of the K-FEM.   
 

 
Fig. 10  Relative displacement error norms vs. 

element characteristic size for the holed 
plate 

 
Fig. 11  Relative errors of strain energy vs. element 

characteristic size for the holed plate 

 
CONCLUSIONS 
 

Convergence characteristics of the K-FEM with different options have been studied in the context of plane 
stress and Reissner-Mindlin plate problems.  The K-FEMs considered passed the weak patch tests except 
for the K-FEM with option P3-3-G0.  For the K-FEM with the Gaussian correlation function, the 
convergence characteristics were better as the correlation parameter higher.  The K-FEM with the QS 
correlation function generally had better convergence characteristics than that with the Gaussian.  The 
incompatibility of the K-FEM tended to decrease as the mesh was refined.  The adverse effect of the 
incompatibility was that the convergence rate for the K-FEM with a higher order basis function might not 
be faster.   
 
Since the solutions of the K-FEM with the QS correlation function showed very good convergence 
characteristics, the use of the QS correlation function in a K-FEM for analyses two-dimensional problems 
is recommended.  With this study, it is confirmed that the K-FEM is a viable alternative to the standard 



FEM and has great potential in engineering applications.  Future research should be directed at: (1) 
convergence study of the K-FEM for three-dimensional problems, and (2) extension and application of the 
K-FEM to different problems in engineering.   
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