
Cooperative Learning Method Based On Game Design and Visual Object Oriented
Environment to Teach Object Oriented Programming Course

Yulia1,Rudy Adipranata2
Informatics Department

Petra Christian University
Surabaya, Indonesia

1yulia@petra.ac.id, 2rudya@petra.ac.id

Abstract— Learning object oriented programming (OOP) is a
hard task for many beginning students who have already
familiar with procedural language paradigm. Over the last six
semesters, only about 59.27% students who take OOP class are
passed. To address persistent difficulties mainly imposed by
the already known paradigm, we adopted the approach of
cooperative learning based on game design with visual
programming environment to teach OOP. Using the context of
game design, we identify the concept of object to assist students
with understanding object oriented design principles.

We use GameMaker to teach about object concept by creating
a game and MinimUML to teach about class design before
implementing any code. As the implementation of cooperative
learning, the class is divided as some groups.

This method is implemented in second semester of year
2008/2009 in five classes and about 124 students are taken this
course. As the result, 80.64% students are passed. It is much
better than the previous semesters.

Keywords- GameMaker, object oriented programming, UML

I. INTRODUCTION
Object Oriented Programming (OOP) is a course we

offered to the students who have already studied, during their
first programming course, procedural programming using C
language. The focus of the course is on teaching the basic
concepts of the OOP paradigm in C. The course is comprised
of both lectures and laboratory activities and is taken by all
Informatics Engineering students.

OOP is continuation from Algorithm and Programming
(AP) course and becomes base for most of majors in
Informatics Engineering Department. Learning OOP is very
difficult for many students. Based on data, result of OOP
classes from the last six semesters indicates that level of pass
of this course is low that is 59.27% (the overall results for
the last six semesters are summarized in Table 1). The first
lessons in OOP are rich and complex, so many students get
confused.

TABLE I. COURSE RESULTS FOR THE LAST SIX SEMESTERS

Pass Fail

Semester
Num of
students

Success
Rate
(%)

Num of
students

Fail
Rate
(%)

Second -
2005/2006

36 65.45% 19 34.55%

First -
2006/2007

68 50.37% 67 49.63%

Second -
2006/2007

126 75.90% 40 24.10%

First -
2007/2008

42 55.26% 34 44.74%

Second -
2007/2008

68 52.71% 61 47.29%

First -
2008/2009

34 48.57% 36 51.43%

Average 59.27% 40.73%

During this time, from the research to the students who
had already takes OOP, we found some reasons that make
students had persistent difficulties are: 1) the students had
already familiar with procedural programming paradigm, so
they difficult to change the paradigm from procedural to
object oriented. 2) It is difficult to explain the problems from
the student’s perspective. 3) It is hard to trace how many
times a student commits similar errors and so observe
repeating similar problems solving patterns. 4)The lecturer
may not know who is having difficulties until it is too late,
may not be able to know why the students don’t understand,
may not be able to convince the students to seek help, and
may not have enough time to know the student’s need in a
large class.

In this research, we had to invent new ways to overcome
those problems. We considered issues in science education to
overcome those problems, mainly cooperative learning with
a visual OOP environment as a tools to describe the object
concept.

II. COOPERATIVE LEARNING
Cooperative learning (CL) is the instructional use of

structured group learning in the classroom requiring
purposeful implementation. Cooperative learning requires
students to use acquired knowledge in a group setting with a
structured learning task [1].

Cooperative learning techniques have been applied
with a wide variety of subject matter and a broad
spectrum of populations. Good discussions of cooperative
learning methods and research can be found in [2, 3, 4].
Each students of a team is responsible not only for learning
what is taught but also for helping team mates learn, thus
creating an atmosphere of achievement. Students work
through the assignment until all group members successfully
understand and complete it.

Research has shown that cooperative learning techniques
can: 1) promote student learning and academic achievement.
2) Increase student retention. 3) Enhance student satisfaction
with their learning experience. 4) help students develop skills
in oral communication. 5) Develop students' social skills. 6)
Promote student self-esteem. 7) Help to promote positive
race relations

III. LEARNING OOP CONCEPT BASED ON GAME DESIGN
It is easier to teach OOP by using game design, because

in a computer game, everything is an object: the monsters,
wall segments, coins, bonuses, power-ups, and the guns and
bullets. Thinking about creating games means thinking about
objects and how they react to one another and to the player's
input. So the game creator naturally thinks in an object-
oriented way. Overmars used GameMaker to create a game
[5], as Figure 1 shows. The designer creates objects. Some
objects have a visual representation, such as an animated
sprite. Others, like those that control game flow or maintain
the score, might lack this feature. Multiple instances of the
same object can appear in the game at the same moment.
Instances have properties. Some are built-in, like the speed
with which the instance moves and the sprite used to
represent it. Others can be defined, manipulated, and
checked using actions or code. The user must define each
object's behavior. While some objects, like wall segments,
will have no behavior, others, like the avatar representing the
player, will most likely have complicated behavior.

Figure 1. Object Concept using Game Design

IV. VISUAL OOP ENVIRONMENT USING MINIMUML
Writing of program code directly at the time of doing

OOP is a difficulty especially when student recognizes the
object concept for the first time. This thing is because of
object concept adopted from real world having form visually
and the relation of between objects can be depicted. While
programming of either procedural and or object oriented to
apply programming language which in the form of typing of
certain words so that difficult to depict it visually. The
following source code is an example of a piece of object
oriented program code.
#ifndef __STUDENT_H
#define __STUDENT_H

class CStudents
 {
 private: //variable declarations
 char _StudentId[9];
 char -StudentName[30];
 public: //method declarations
 CStudents(void); //constructor
 ~CStudents(void); //destructor
 void setStudentId(char id[9]);
 void setStudentName(char name[30]);
 char* getStudentId();
 char* getStudentName();
 };
#endif

To overcome the thing, has been developed some
application visual programming environment to assist
programming in visual form and program code that can be
yielded automatically by the application. For development of
program in C++ language, Turner [6] develops minimUML,
that is an visual programming environment by using UML
(Unified Modeling Language) [7]. MinimUML has ability to
yield program code in C++ language based on diagrams
made by user. Figure 2 is visual display by using
minimUML with the same program case like source code
above.

Figure 2. Class Design using MinimUML

V. CLASS STRUCTURE
The structure of the OOP course is based on two 100

minutes sessions per week. As the implementation of
cooperative learning, the class is divided as some groups.
One group consists of five until six students. Class time is
used as follows: 1) lecture class and 2) laboratory activities.
For lectures class : 20-25 minutes, group presentation to
other groups, 20-30 minutes, short lecture to present new
material, and 40-45 minutes, planned activity. For laboratory
activities: 10-15 minutes, preliminary test about previous
material, 10-15 minutes, short lecture to present new
material, and 60-70 minutes, planned activity.

In the first week, there is a preliminary test about
fundamental programming. This test result applied for
forming of group of where the members of the group are
consisted of student by top-rating, low and medium.

In the early of lecturing, every group will receive a
certain matter as according to lecture's time table. Each
group will prepare the matter and is obliged to present it at a
meeting as according to matter sequence. At the time of
presentation, every member of the group must present at
each other group. Thereby every member will prepare and
there is no member depends on other member. Assessment
done by each group receiving presentation.

After the presentation, question and answer, and
discussion completed, lecturer does review. Thereby learning
process teaches focus at student centered learning, not
anymore lecturer as center study. Here lecturer will apply
auxiliaries like GameMaker and minimUML.

At the laboratory activity, CL strategy cannot be done by
each participant because they will stay at a computer to
finalize problems. At this laboratory activity, the student will
do some problems directly in front of computer.

Evaluation system consisted of five components that are
First Test, Middle Semester Test, Second test, Final
Semester Test and Laboratory Activity. First Test was taken
from group activity of during doing presentation.

For Middle and Final Test, done self-sportingly by
student, where student have to finalize some problems which

they have gets before. Middle and Final Test are done
directly in front of computer. For second test, done by group,
where each group is have to finalize a game problems that is
giving from the lecturer. The assessment of laboratory
activity is gotten by doing task in each laboratory meeting,
where the assessment is individual.

IMPLEMENTATION: TEACHING GAME DESIGN
USING GAMEMAKER AND MINIMUML

As a case study for teaching object oriented concept, we
used GameMaker as shown in Figure 3 below. Student will
learn about the object concept, where an object is not only
have data but also function. At the example below is shown
how an ball object can be given data like color, measure,
form and also some functions like moving, bounds, flows on
and what happened when an object is formed (constructor
concept) and when an object destroyed (destructor concept)

Figure 3. Using GameMaker to Learn OO Concept

As a case study for game design, we use WARCRAFT
game [8] as shown in Figure 4 below. Figure 5 is the class
diagram design using minimUML for the WARCRAFT
game. At this example, we design a base class which called
UNIT where this class will be inherited to become class
WORKER and FIGHTER. Class FIGHTER will be inherited
to become class HERO where in class HERO has object
from class ABILITY. The class design using minimUML is
easier to be understood by the students because it is
submitted visually in the form of class diagrams. Then we
can generate the source code in language C from this class
diagram design.

Figure 4. War Craft [8]

Figure 5. Warcraft Class Design using MinimUML

VI. EVALUATION
This system was implemented in 5 classes with 124

students. The average grade value is 2.49. The average
grade value form each class can be seen in Figure 6 and the
result of the entire classes can be seen in Table 2.

0

2

4

6

8

10

12

A B+ B C+ C D E

Class A
Class B
Class C
Class D
Class E

Figure 6. The Grade Value

TABLE II. COURSE RESULT AFTER IMPLEMENT THE NEW SYSTEM

Grade Number of Students Percentage
A 15 12,097%

B+ 19 15,323%
B 18 14,516%

C+ 25 20,161%
C 19 18,548%
D 24 16,129%
E 4 3,226%

From the table above, the total percentage of the passing

students (students with grade A, B+, B, C+, and C) are
80.64%. This result is much better than the results before.

From the questionnaire result gived to the students, most
of students feel happy to learn OOP with cooperative
learning system, applies game and visual design because 1)
in a team, they can helping each other, 2) The existence of
game makes them more enjoy 3) Easier to understand object
concept after seeing design visually.

But there are also some input from student about group
presentation because sometimes they don't understand what
explained by their friend because the presented student not
ready and or difficult to explain. Also because this subject
performed in a laboratory, where every student is in front of
computer, hence there are difficulty to discuss.

VII. CONCLUSION
Learning object-oriented design and programming is

challenging for novices, especially for student who have
already familiar with procedural language paradigm. The
shift from procedural to object-oriented paradigm is a
difficult task. We faced the problems emanating from such a
transition and we were guided to a fundamental change in
the way we teach introductory object-oriented programming.
Many students have learning difficulties which cannot be
entirely solved by teachers. To help student learning, we
have designed a new method in teaching concept based on
game design and visual environment in a team work so that
he or she can apply them in design and programming

problems. This method can improve the graduation of
student participants from 59.27% become 80.64%.

REFERENCES:
[1] B. Cameron, “Active and Cooperative Learning Strategies for the

Economics Classroom,” in Teaching Undergraduate Economics: A
Handbook for Instructors, William B. Walstad, Phillip Saunders,
editors, Boston, London and Toronto: Irwin/McGraw-Hill, 1998

[2] D. W. Johnson. and F. P. Johnson, Joining Together: Group Theory
and Group Skills, Prentice-Hall, 1975

[3] S. Sharan, Handbook of Cooperative Learning Methods, Greenwood
Press, 1994

[4] R.E. Slavin, Cooperative Learning: Theory, Research, and Practice,
2nd Edition, Prentice Hall, 1995

[5] M. Overmars, “Learning Object-Oriented Design by Creating
Games,” IEEE Potentials Magazine, Volume: 23, Issue 5, pp 11-13,
Dec. 2004-Jan. 2005

[6] S.A, Turner, M.A. Pérez-Quiñones, and S. H. Edwards. “minimUML:
a Minimalist Approach to UML Diagramming for Early Computer
Science Education,” Journal on Educational Resources in Computing
(JERIC) Volume 5, Issue 4, December 2005

[7] Turner, Scott A., Manuel A. Pérez-Quiñones, and Stephen H.
Edwards. “minimUML: A Minimalist Approach to UML
Diagramming for Early Computer Science Education,” Journal on
Educational Resources in Computing (JERIC) Volume 5, Issue 4,
December 2005

[8] http://www.worldofwarcraft.com/

